Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biomolecules ; 12(9)2022 09 06.
Article in English | MEDLINE | ID: covidwho-2273374

ABSTRACT

Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded ß-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.


Subject(s)
Methyltransferases , S-Adenosylmethionine , Amino Acid Sequence , Aspartic Acid , Lysine/genetics , Methyltransferases/metabolism , Phylogeny , S-Adenosylmethionine/metabolism , Water
2.
Inflamm Bowel Dis ; 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-2232823

ABSTRACT

BACKGROUND: Data from the first wave of the coronavirus disease 2019 (COVID-19) pandemic suggested that patients with inflammatory bowel disease (IBD) are not at higher risk of being infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) than the general population and that a worse prognosis is not associated with immunomodulatory drugs, with the possible exception of systemic steroids. METHODS: This retrospective, observational study included consecutive IBD patients from the Sicilian Network for Inflammatory Bowel Disease (SN-IBD) cohort who had a SARS-CoV-2 infection diagnosis (polymerase chain reaction-confirmed presence of the viral genome in a nasopharyngeal swab) during the second COVID-19 pandemic wave (September 2020 to December 2020). Data regarding demographics, IBD features and treatments, and comorbidities were analyzed in correlation with COVID-19 clinical outcomes. RESULTS: Data on 122 patients (mean age, 43.9 ±â€…16.7 years; males, 50.0%; Crohn's disease, 62.3%; ulcerative colitis, 37.7%) were reported. Twelve patients developed COVID-19-related pneumonia (9.8%), 4 (3.3%) required respiratory assistance (nonmechanical ventilation or orotracheal intubation), and 4 died (case fatality rate, 3.3%). In a multivariable analysis, age (odds ratio [OR], 1.034; 95% CI, 1.006-1.147; P = .032) and severe IBD activity (OR, 13.465; 95% CI, 1.104-164.182; P = .042) were independent predictors of COVID-19-related pneumonia, while severe IBD activity (OR, 15.359; 95% CI, 1.320-178.677; P = .030) was the only independent predictor of severe COVID-19, a composite endpoint defined as the need for respiratory assistance or death. A trend towards a protective role of tumor necrosis factor α inhibitors on pneumonia development was reported (P = .076). CONCLUSIONS: In this cohort of patients with IBD and SARS-CoV-2 infection, severe IBD activity was the only independent risk factor for severe COVID-19.


This retrospective, observational study on patients with inflammatory bowel disease and severe acute respiratory syndrome coronavirus 2 infection showed that severe inflammatory bowel disease activity was the only independent risk factor for severe coronavirus disease 2019.

3.
Comput Struct Biotechnol J ; 20: 5564-5573, 2022.
Article in English | MEDLINE | ID: covidwho-2061048

ABSTRACT

Viral infections represent a major health concern worldwide. The alarming rate at which SARS-CoV-2 spreads, for example, led to a worldwide pandemic. Viruses incorporate genetic material into the host genome to hijack host cell functions such as the cell cycle and apoptosis. In these viral processes, protein-protein interactions (PPIs) play critical roles. Therefore, the identification of PPIs between humans and viruses is crucial for understanding the infection mechanism and host immune responses to viral infections and for discovering effective drugs. Experimental methods including mass spectrometry-based proteomics and yeast two-hybrid assays are widely used to identify human-virus PPIs, but these experimental methods are time-consuming, expensive, and laborious. To overcome this problem, we developed a novel computational predictor, named cross-attention PHV, by implementing two key technologies of the cross-attention mechanism and a one-dimensional convolutional neural network (1D-CNN). The cross-attention mechanisms were very effective in enhancing prediction and generalization abilities. Application of 1D-CNN to the word2vec-generated feature matrices reduced computational costs, thus extending the allowable length of protein sequences to 9000 amino acid residues. Cross-attention PHV outperformed existing state-of-the-art models using a benchmark dataset and accurately predicted PPIs for unknown viruses. Cross-attention PHV also predicted human-SARS-CoV-2 PPIs with area under the curve values >0.95. The Cross-attention PHV web server and source codes are freely available at https://kurata35.bio.kyutech.ac.jp/Cross-attention_PHV/ and https://github.com/kuratahiroyuki/Cross-Attention_PHV, respectively.

4.
Studies in Big Data ; 95:225-262, 2022.
Article in English | Scopus | ID: covidwho-1930260

ABSTRACT

In this era of technological revolution, we are familiar with many scientific terminologies and gadgets. Today, internet is the backbone of the whole world as internet connectivity plays a vital role in our routine life and makes our life much easier. Wireless sensors are implemented in many applications like agricultural sector, military, home automation and health care sector. These wireless sensors are easy to operate and handle. Their performance varies according to the application. By connecting internet with these smart wireless sensors they act like Internet of Things. In the present scenario, whole world is suffering from Covid-19 pandemic. This is very strenuous situation for mankind. It is enigmatic to recognize a person with Covid-19 symptoms. For the identification of affected patient, some models are coined with the aid of wireless sensors and internet of things. The principle goal of this survey is to demonstrate the critical role of wireless sensor networks with internet of things for Covid-19 health care purposes. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

5.
Int J Nanomedicine ; 17: 2893-2905, 2022.
Article in English | MEDLINE | ID: covidwho-1928357

ABSTRACT

Introduction: Since the coronavirus disease 2019 (COVID-19) pandemic, the value of mRNA vaccine has been widely recognized worldwide. Messenger RNA (mRNA) therapy platform provides a promising alternative to DNA delivery in non-viral gene therapy. Lipid nanoparticles (LNPs), as effective mRNA delivery carriers, have been highly valued by the pharmaceutical industry, and many LNPs have entered clinical trials. Methods: We developed an ideal lipid nanoformulation, named LNP3, composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and cholesterol, and observed its release efficiency, sustained release, organ specific targeting and thermal stability. Results: In vitro studies showed that the transfection efficiency of LNP3 was higher than that of LNPs composed of DOTAP-DOPE and DOTAP-cholesterol. The positive to negative charge ratio of LNPs is a determinant of mRNA transfer efficiency in different cell lines. We noted that the buffer affected the packaging of mRNA LNPs and identified sodium potassium magnesium calcium and glucose solution (SPMCG) as a favorable buffer formulation. LNP3 suspension can be lyophilized into a thermally stable formulation to maintain activity after rehydration both in vitro and in vivo. Finally, LNP3 showed sustained release and organ specific targeting. Conclusion: We have developed an ideal lipid nanoformulation composed of DOTAP, DOPE and cholesterol for effective mRNA delivery.


Subject(s)
COVID-19 , Lipids , Cholesterol , Delayed-Action Preparations , Fatty Acids, Monounsaturated , Humans , Liposomes , Nanoparticles , Quaternary Ammonium Compounds , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
6.
Science of Advanced Materials ; 14(1):162-174, 2022.
Article in English | Web of Science | ID: covidwho-1819953

ABSTRACT

The novel coronavirus (2019-nCoV) triggered a worldwide rise in the prevalence of the coronavirus outbreak (COVID-19) and surfaced as a universal wellbeing matter. Analogous with SARS-CoV and MERS-CoV, the main 3-chymotrypsin-alike cysteine protease (3CL(Pro)) virus enzyme that manages the replications of 2019-nCoV and regulates its existence span, possibly will be considered like a medication break through focus. In this study, the binding potential of 10 glucosinolates (Glu) having a variety of structures was studied with the catalytic dyad remains of 2019-nCoV-3CL(Pro ) by molecular cutting developing. The outcomes have shown that Glu containing sinigrin (SN) have been shown to be realistically bound to the 2019-nCoV-3CL(Pro) receptor and catalytic dyad binding sites (Cys145 and His41). Our simulation results have shown that sinigrin have a potential activity against 2019-nCoV and could be further used for drug production and optimization in the battle against COVID-19. In details, SN-SARS-CoV-2-3CL(Pro)-facilityacted without exhibit whichever observable variations, with reference to the constancy of Glu-enzyme complexes by means of average RMSD of 1.5 +/- 0.02 angstrom. Meanwhile, the ordinary behavior of a SN-SARS-CoV-2-3CL(Pro) complex continued as compact and steady during (50 ns) MD simulations. Current investigation has revealed that Glu with a specific structure could be successful against COVID-19 as natural components.

7.
Sens Actuators B Chem ; 362: 131764, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1763980

ABSTRACT

The pandemic of the novel coronavirus disease 2019 (COVID-19) is continuously causing hazards for the world. Effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can relieve the impact, but various toxic chemicals are also released into the environment. Fluorescence sensors offer a facile analytical strategy. During fluorescence sensing, biological samples such as tissues and body fluids have autofluorescence, giving false-positive/negative results because of the interferences. Fluorescence near-infrared (NIR) nanosensors can be designed from low-toxic materials with insignificant background signals. Although this research is still in its infancy, further developments in this field have the potential for sustainable detection of SARS-CoV-2. Herein, we summarize the reported NIR fluorescent nanosensors with the potential to detect SARS-CoV-2. The green synthesis of NIR fluorescent nanomaterials, environmentally compatible sensing strategies, and possible methods to reduce the testing frequencies are discussed. Further optimization strategies for developing NIR fluorescent nanosensors to facilitate greener diagnostics of SARS-CoV-2 for pandemic control are proposed.

8.
EBioMedicine ; 75: 103806, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611694

ABSTRACT

BACKGROUND: To identify host genetic variants (SNPs) associated with COVID-19 disease severity, a number of genome-wide association studies (GWAS) have been conducted. Since most of the identified variants are located at non-coding regions, such variants are presumed to affect the expression of neighbouring genes, thereby influencing COVID-19 disease severity. However, it remains largely unknown which genes are influenced by such COVID-19 GWAS loci. METHODS: CRISPRi (interference)-mediated gene expression analysis was performed to identify genes functionally regulated by COVID-19 GWAS loci by targeting regions near the loci (SNPs) in lung epithelial cell lines. The expression of CRISPRi-identified genes was investigated using COVID-19-contracted human and monkey lung single-nucleus/cell (sn/sc) RNA-seq datasets. FINDINGS: CRISPRi analysis indicated that a region near rs11385942 at chromosome 3p21.31 (locus of highest significance with COVID-19 disease severity at intron 5 of LZTFL1) significantly affected the expression of LZTFL1 (P<0.05), an airway cilia regulator. A region near rs74956615 at chromosome 19p13.2 (locus located at the 3' untranslated exonic region of RAVER1), which is associated with critical illness in COVID-19, affected the expression of RAVER1 (P<0.05), a coactivator of MDA5 (IFIH1), which induces antiviral response genes, including ICAM1. The sn/scRNA-seq datasets indicated that the MDA5/RAVER1-ICAM1 pathway was activated in lung epithelial cells of COVID-19-resistant monkeys but not those of COVID-19-succumbed humans. INTERPRETATION: Patients with risk alleles of rs11385942 and rs74956615 may be susceptible to critical illness in COVID-19 in part through weakened airway viral clearance via LZTFL1-mediated ciliogenesis and diminished antiviral immune response via the MDA5/RAVER1 pathway, respectively. FUNDING: NIH.


Subject(s)
COVID-19/genetics , CRISPR-Cas Systems , Genetic Loci , Polymorphism, Single Nucleotide , Ribonucleoproteins/genetics , SARS-CoV-2/genetics , Transcription Factors/genetics , Animals , COVID-19/metabolism , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 19/metabolism , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 3/metabolism , Databases, Nucleic Acid , Genome-Wide Association Study , Haplorhini , Humans , RNA-Seq , Ribonucleoproteins/metabolism , SARS-CoV-2/metabolism , Transcription Factors/metabolism
9.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-1389472

ABSTRACT

To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of biomolecules or biomolecular interactions. In this context here, we developed an approach to successfully regenerate a fiber-optic (FO)-SPR surface when utilizing cobalt (II)-nitrilotriacetic acid (NTA) surface chemistry. To achieve this, we tested multiple regeneration conditions that can disrupt the NTA chelate on a surface fully saturated with His6-tagged antibody fragments (scFv-33H1F7) over ten regeneration cycles. The best surface regeneration was obtained when combining 100 mM EDTA, 500 mM imidazole and 0.5% SDS at pH 8.0 for 1 min with shaking at 150 rpm followed by washing with 0.5 M NaOH for 3 min. The true versatility of the established approach was proven by regenerating the NTA surface for ten cycles with three other model system bioreceptors, different in their size and structure: His6-tagged SARS-CoV-2 spike fragment (receptor binding domain, RBD), a red fluorescent protein (RFP) and protein origami carrying 4 RFPs (Tet12SN-RRRR). Enabling the removal of His6-tagged bioreceptors from NTA surfaces in a fast and cost-effective manner can have broad applications, spanning from the development of biosensors and various biopharmaceutical analyses to the synthesis of novel biomaterials.

10.
Curr Opin Colloid Interface Sci ; 55: 101479, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1267633

ABSTRACT

We provide here a general view on the interactions of surfactants with viruses, with a particular emphasis on how such interactions can be controlled and employed for inhibiting the infectivity of enveloped viruses, including coronaviruses. The aim is to provide to interested scientists from different fields, including chemistry, physics, biochemistry, and medicine, an overview of the basic properties of surfactants and (corona)viruses, which are relevant to understanding the interactions between the two. Various types of interactions between surfactant and virus are important, and they act on different components of a virus such as the lipid envelope, membrane (envelope) proteins and nucleocapsid proteins. Accordingly, this cannot be a detailed account of all relevant aspects but instead a summary that bridges between the different disciplines. We describe concepts and cover a selection of the relevant literature as an incentive for diving deeper into the relevant material. Our focus is on more recent developments around the COVID-19 pandemic caused by SARS-CoV-2, applications of surfactants against the virus, and on the potential future use of surfactants for pandemic relief. We also cover the most important aspects of the historical development of using surfactants in combatting virus infections. We conclude that surfactants are already playing very important roles in various directions of defence against viruses, either directly, as in disinfection, or as carrier components of drug delivery systems for prophylaxis or treatment. By designing tailor-made surfactants, and consequently, advanced formulations, one can expect more and more effective use of surfactants, either directly as antiviral compounds or as part of more complex formulations.

11.
Ann Biol Clin (Paris) ; 79(1): 7-16, 2021 02 01.
Article in French | MEDLINE | ID: covidwho-1079401

ABSTRACT

Soon after the pandemic, numerous publications described cases of neurological disorders associated with the SARS-CoV-2 infection. The range of neurological symptoms is becoming increasingly more extensive as the pandemic progresses. However, it is not yet well established whether the manifestations are due to direct viral damage to the nervous system or indirect consequences of the infection. This review presents an inventory of the biochemical markers studied in the context of neurological disorders related to SARS-CoV-2. By reflecting various physiopathological mechanisms, these biomarkers allow both a better understanding of the pathophysiology of Covid-19 and a contribution to the diagnosis of neurologic troubles; they could participate in the prognostic evaluation of patients.


Subject(s)
Biomarkers/analysis , COVID-19/complications , Nervous System Diseases/diagnosis , Nervous System Diseases/etiology , SARS-CoV-2/physiology , COVID-19/diagnosis , COVID-19/epidemiology , Disease Progression , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/virology , Pandemics , Predictive Value of Tests , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL